The $q$-th order spectrum is a polynomial of degree $q$ in the entries of a signal $x\in\mathbb{C}^N$, which is invariant under circular shifts of the signal. For $q\geq 3$, this polynomial determines the signal uniquely, up to a circular shift, and is called a high-order spectrum. The high-order spectra, and in particular the bispectrum ($q=3$) and the trispectrum ($q=4$), play a prominent role in various statistical signal processing and imaging applications, such as phase retrieval and single-particle reconstruction. However, the dimension of the $q$-th order spectrum is $N^{q-1}$, far exceeding the dimension of $x$, leading to increased computational load and storage requirements. In this work, we show that it is unnecessary to store and process the full high-order spectra: a signal can be characterized uniquely, up to symmetries, from only $N+1$ linear measurements of its high-order spectra. The proof relies on tools from algebraic geometry and is corroborated by numerical experiments.


翻译:$q美元顺序频谱是信号 $x\ in\ mathbb{C\\\\\\\C\N$, 在信号的圆形转换下, 在信号的输入中, 以美元为单位, 以美元为单位。 对于 $\geq 3 美元, 以美元为单位, 以美元为单位确定信号的独特性, 直至循环转换, 并被称为高序频谱。 高序频谱, 特别是双倍谱( q=3美元) 和三倍谱( q=4美元), 在各种统计信号处理和成像应用中, 如相继检索和单粒子重建中, 具有突出的作用。 然而, $q美元顺序频谱的维度是 $nqq- 1 美元, 大大超过 $x 的维度, 导致计算负载和存储要求的增加。 在这项工作中, 我们证明没有必要存储和处理整个高序频谱: 信号可以被描述为独特性,, 最高为对等信号的描述, 从只用 $N+1美元直线度测量 工具进行 。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
44+阅读 · 2021年6月1日
【2020新书】Python文本分析,104页pdf
专知会员服务
98+阅读 · 2020年12月23日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
ICML2020 图神经网络的预训练
图与推荐
12+阅读 · 2020年4月4日
已删除
inpluslab
8+阅读 · 2019年10月29日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
自然语言处理中的语言模型预训练方法
PaperWeekly
14+阅读 · 2018年10月21日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【回顾】PyTorch 简介
AI研习社
8+阅读 · 2017年10月29日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
3+阅读 · 2018年6月19日
VIP会员
相关VIP内容
相关资讯
ICML2020 图神经网络的预训练
图与推荐
12+阅读 · 2020年4月4日
已删除
inpluslab
8+阅读 · 2019年10月29日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
自然语言处理中的语言模型预训练方法
PaperWeekly
14+阅读 · 2018年10月21日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【回顾】PyTorch 简介
AI研习社
8+阅读 · 2017年10月29日
Top
微信扫码咨询专知VIP会员