We investigate the ability to detect slag formations in images from inside a Grate-Kiln system furnace with two deep convolutional neural networks. The conditions inside the furnace cause occasional obstructions of the camera view. Our approach suggests dealing with this problem by introducing a convLSTM-layer in the deep convolutional neural network. The results show that it is possible to achieve sufficient performance to automate the decision of timely countermeasures in the industrial operational setting. Furthermore, the addition of the convLSTM-layer results in fewer outlying predictions and a lower running variance of the fraction of detected slag in the image time series.
翻译:我们调查了在Grate-Kiln系统炉子内用两个深层进化神经网络探测图像中的炉子形成炉子的能力,炉子内的条件有时会阻碍摄像器的视图。我们的方法建议通过在深层进化神经网络中引入一个 convLSTM-层来处理这个问题。结果显示,在工业操作环境中实现及时采取对策决定的自动化是可能的。此外,加上电流LSTM-层,结果减少了外向预测,图像时间序列中检测到的炉子部分的运行差异也较小。