Big data analytics in cloud environments introduces challenges such as real-time load balancing besides security, privacy, and energy efficiency. In this paper, we propose a novel load balancing algorithm in cloud environments that performs resource allocation and task scheduling efficiently. The proposed load balancer reduces the execution response time in big data applications performed on clouds. Scheduling, in general, is an NP-hard problem. In our proposed algorithm, we provide solutions to reduce the search area that leads to reduced complexity of the load balancing. We recommend two mathematical optimization models to perform dynamic resource allocation to virtual machines and task scheduling. The provided solution is based on the hill-climbing algorithm to minimize response time. We evaluate the performance of proposed algorithms in terms of response time, turnaround time, throughput metrics, and request distribution with some of the existing algorithms that show significant improvements
翻译:云层环境中的大数据分析学提出了挑战,例如,除了安全、隐私和能源效率之外,实时负载平衡、安全、隐私和能源效率。本文中,我们提议在云层环境中采用新的负负平衡算法,以高效地进行资源分配和任务时间安排。拟议的负负平衡法减少了在云层上应用的大数据应用程序的执行反应时间。一般而言,排程是一个NP硬问题。在我们拟议的算法中,我们提供了减少搜索区域的解决办法,从而减少了负载平衡的复杂性。我们建议了两种数学优化模型,以对虚拟机器和任务时间安排进行动态资源分配。我们提供的解决办法是以山坡式算法为基础,以尽量减少反应时间。我们从反应时间、周转时间、吞吐量量等角度评估了拟议算法的运作情况,并要求与一些显示重大改进的现有算法进行分配。