Demand for enterprise data warehouse solutions to support real-time Online Transaction Processing (OLTP) queries as well as long-running Online Analytical Processing (OLAP) workloads is growing. Greenplum database is traditionally known as an OLAP data warehouse system with limited ability to process OLTP workloads. In this paper, we augment Greenplum into a hybrid system to serve both OLTP and OLAP workloads. The challenge we address here is to achieve this goal while maintaining the ACID properties with minimal performance overhead. In this effort, we identify the engineering and performance bottlenecks such as the under-performing restrictive locking and the two-phase commit protocol. Next we solve the resource contention issues between transactional and analytical queries. We propose a global deadlock detector to increase the concurrency of query processing. When transactions that update data are guaranteed to reside on exactly one segment we introduce one-phase commit to speed up query processing. Our resource group model introduces the capability to separate OLAP and OLTP workloads into more suitable query processing mode. Our experimental evaluation on the TPC-B and CH-benCHmark benchmarks demonstrates the effectiveness of our approach in boosting the OLTP performance without sacrificing the OLAP performance.
翻译:对企业数据仓解决方案的需求不断增加,以支持实时在线交易处理(OLTP)的查询以及长期在线分析处理(OLAP)工作量。格林普卢数据库传统上被称为OLAP数据仓系统,处理OLTP工作量的能力有限。在本文件中,我们将格林普卢扩大为混合系统,为OLTP和OLAP工作量服务。我们在这里处理的挑战是实现这一目标,同时以最低性能管理费维持ACID财产。在这项努力中,我们查明工程和业绩瓶颈,如表现不力的限制性锁定和两阶段承诺协议。下一步我们解决交易和分析性询问之间的资源争议问题。我们提议建立全球僵局探测器,以增加查询处理的调和货币。当更新数据的交易保证完全停留在某一部分时,我们采用一个阶段致力于加快查询处理的能力。我们的资源小组模型将OLAP和OLTP工作量分开到更合适的查询处理模式。我们对TPC-B和CH-benCHmart基准的实验性评估显示了我们方法在不牺牲OLTP业绩的情况下提高业绩的有效性。