The ability to autonomously navigate in unknown environments is important for mobile robots. The map is the core component to achieve this. Most map representations rely on drift-free state estimation and provide a global metric map to navigate. However, in large-scale real-world applications, it's hard to prohibit drifts and compose a globally consistent map quickly. In this paper, a novel representation named, HiTMap, is proposed to enhance the existing map representations. The central idea is to adopt a submap-based hierarchical topology rather than a global metric map so that only a local metric map is maintained for obstacle avoidance which ensures the lightweight of the representation. To guide the robots navigate into unknown spaces, frontiers are detected and attached to the map as an attribute. We also develop a path planning module to evaluate the feasibility and efficiency of our map representation. The system is validated in a simulation environment and a demonstration in the real world is conducted. In addition, the HiTMap is made available open-source.
翻译:在未知环境中自主导航的能力对于移动机器人很重要。 地图是实现这一目标的核心要素。 大多数地图显示都依赖于无漂移状态的估算, 并提供全球导航图。 但是, 在大规模现实应用中, 很难禁止漂流, 并快速绘制一个全球一致的地图。 在本文中, 提议使用名为 hiTMap 的新代表来增强现有的地图显示方式。 中心思想是采用一个基于子地图的等级表层, 而不是一个全球通用地图, 以便只维持一个本地的通用地图, 来避免障碍, 以确保代表方式的轻量度。 为了引导机器人进入未知的空间, 检测出边界, 并将其附在地图上作为属性。 我们还开发一个路径规划模块, 以评估地图显示方式的可行性和效率。 系统在模拟环境中得到验证, 并在现实世界中进行演示。 此外, HTMap 提供开放源 。