In secure summation, $K$ users, each holds an input, wish to compute the sum of the inputs at a server without revealing any information about {\em all the inputs} even if the server may collude with {\em an arbitrary subset of users}. In this work, we relax the security and colluding constraints, where the set of inputs whose information is prohibited from leakage is from a predetermined collection of sets (e.g., any set of up to $S$ inputs) and the set of colluding users is from another predetermined collection of sets (e.g., any set of up to $T$ users). For arbitrary collection of security input sets and colluding user sets, we characterize the optimal randomness assumption, i.e., the minimum number of key bits that need to be held by the users, per input bit, for weakly secure summation to be feasible, which generally involves solving a linear program.
翻译:在安全和谐求和中,$K$个用户每个持有一个输入,希望在不透露任何关于{\em 所有输入}的信息的情况下,在一个服务器上计算输入的总和,即使服务器可能与{\em 任意子集的用户}串通。在这项工作中,我们放宽了安全和协作的限制,其中不能泄露信息的输入集合来自预定的集合(例如,最多$S$个输入的任何集合),而串通用户的集合来自另一个预定的集合(例如,最多$T$个用户的任何集合)。对于任意的安全输入集合和串通用户集合,我们表征了最优的随机性假设,即每个输入位需要由用户持有的密钥比特的最小数量,以便让弱安全求和成为可能,这通常涉及解决线性规划问题。