The rise in online misinformation in recent years threatens democracies by distorting authentic public discourse and causing confusion, fear, and even, in extreme cases, violence. There is a need to understand the spread of false content through online networks for developing interventions that disrupt misinformation before it achieves virality. Using a Deep Bidirectional Transformer for Language Understanding (BERT) and propagation graphs, this study classifies and visualizes the spread of misinformation on a social media network using publicly available Twitter data. The results confirm prior research around user clusters and the virality of false content while improving the precision of deep learning models for misinformation detection. The study further demonstrates the suitability of BERT for providing a scalable model for false information detection, which can contribute to the development of more timely and accurate interventions to slow the spread of misinformation in online environments.
翻译:近些年来,在线错误信息上升,扭曲了真实的公共言论,并造成混乱、恐惧甚至极端情况下的暴力,从而威胁到民主政体。有必要通过在线网络了解虚假内容的传播,以制定在病毒性成真之前干扰错误信息的干预措施。使用“语言理解深度双向变换器”和传播图,这项研究利用公开提供的推特数据,对在社交媒体网络上传播错误信息进行分类和可视化。研究结果证实了先前围绕用户群群的研究,以及虚假内容的可传播性,同时改进了识别错误信息的深度学习模型的精确性。该研究进一步表明,德国应急小组是否适合提供可扩展的虚假信息检测模型,这可有助于开发更及时和准确的干预措施,以减缓网上环境中错误信息的传播。