As governments embrace algorithms, the burgeoning field of algorithmic fairness provides an influential methodology for promoting equality-enhancing reforms. However, even algorithms that satisfy mathematical fairness standards can exacerbate oppression, causing critics to call for the field to shift its focus from "fairness" to "justice." Yet any efforts to achieve algorithmic justice in practice are constrained by a fundamental technical limitation: the "impossibility of fairness" (an incompatibility between mathematical definitions of fairness). The impossibility of fairness thus raises a central question about algorithmic fairness: How can computer scientists support equitable policy reforms with algorithms? In this article, I argue that promoting justice with algorithms requires reforming the methodology of algorithmic fairness. First, I diagnose why the current methodology for algorithmic fairness--which I call "formal algorithmic fairness"--is flawed. I demonstrate that the problems of algorithmic fairness--including the impossibility of fairness--result from the methodology of the field, which restricts analysis to isolated decision-making procedures. Second, I draw on theories of substantive equality from law and philosophy to propose an alternative methodology: "substantive algorithmic fairness." Because substantive algorithmic fairness takes a more expansive scope to fairness, it enables an escape from the impossibility of fairness and provides a rigorous guide for alleviating injustice with algorithms. In sum, substantive algorithmic fairness presents a new direction for algorithmic fairness: away from formal mathematical models of "fairness" and toward substantive evaluations of how algorithms can (and cannot) promote justice.


翻译:当政府接受算法时,迅速发展的算法公正领域提供了促进促进平等改革的有影响力的方法。然而,即使符合数学公平标准的算法也可以加剧压迫,让批评家呼吁将实地的重点从“公平”转向“公正 ” 。 然而,在实践中实现算法公正的任何努力都受到一个根本的技术限制:“公正性的不可能性” (数学公平定义之间不一致) 。 公平的可能性由此提出了一个有关算法公平的一个中心问题:计算机科学家如何支持公平政策改革与算法改革? 在文章中,我争辩说,用算法促进正义需要改革算法公平的方法。 首先,我判断为什么目前关于算法公平的方法——我称之为“正规的算法公平”——有缺陷。 我证明,算法公正的问题,包括不可能从这个方法产生公平性结果,这限制了对孤立的决策程序的分析。 其次,我从法律和哲学的实质性平等理论到提出一种替代方法:“实质性的算法公平性:从实质性的公平性,到从实质性的公平性。”因为实质性的算法公平性使一种严格的算法的公平性从一个更具有伸缩范围。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月13日
Arxiv
0+阅读 · 2022年6月10日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员