In this work, we address the energy efficiency (EE) maximization problem in a downlink communication system utilizing reconfigurable intelligent surface (RIS) in a multi-user massive multiple-input multiple-output (mMIMO) setup with zero-forcing (ZF) precoding. The channel between the base station (BS) and RIS operates under a Rician fading with Rician factor K1. Since systematically optimizing the RIS phase shifts in each channel coherence time interval is challenging and burdensome, we employ the statistical channel state information (CSI)-based optimization strategy to alleviate this overhead. By treating the RIS phase shifts matrix as a constant over multiple channel coherence time intervals, we can reduce the computational complexity while maintaining an interesting performance. Based on an ergodic rate (ER) lower bound closed-form, the EE optimization problem is formulated. Such a problem is non-convex and challenging to tackle due to the coupled variables. To circumvent such an obstacle, we explore the sequential optimization approach where the power allocation vector p, the number of antennas M, and the RIS phase shifts v are separated and sequentially solved iteratively until convergence. With the help of the Lagrangian dual method, fractional programming (FP) techniques, and Lemma 1, insightful compact closed-form expressions for each of the three optimization variables are derived. Simulation results validate the effectiveness of the proposed method across different generalized channel scenarios, including non-line-of-sight (NLoS) and partially line-of-sight (LoS) conditions. This underscores its potential to significantly reduce power consumption, decrease the number of active antennas at the base station, and effectively incorporate RIS structure in mMIMO communication setup with just statistical CSI knowledge.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员