Scene flow represents the 3D motion of every point in the dynamic environments. Like the optical flow that represents the motion of pixels in 2D images, 3D motion representation of scene flow benefits many applications, such as autonomous driving and service robot. This paper studies the problem of scene flow estimation from two consecutive 3D point clouds. In this paper, a novel hierarchical neural network with double attention is proposed for learning the correlation of point features in adjacent frames and refining scene flow from coarse to fine layer by layer. The proposed network has a new more-for-less hierarchical architecture. The more-for-less means that the number of input points is greater than the number of output points for scene flow estimation, which brings more input information and balances the precision and resource consumption. In this hierarchical architecture, scene flow of different levels is generated and supervised respectively. A novel attentive embedding module is introduced to aggregate the features of adjacent points using a double attention method in a patch-to-patch manner. The proper layers for flow embedding and flow supervision are carefully considered in our network designment. Experiments show that the proposed network outperforms the state-of-the-art performance of 3D scene flow estimation on the FlyingThings3D and KITTI Scene Flow 2015 datasets. We also apply the proposed network to realistic LiDAR odometry task, which is an key problem in autonomous driving. The experiment results demonstrate that our proposed network can outperform the ICP-based method and shows the good practical application ability.


翻译:屏幕流代表动态环境中每个点的 3D 运动。 像 2D 图像中像素运动的光学流一样, 场景流的 3D 运动代表着像素运动, 有利于许多应用, 例如自主驱动和服务机器人。 本文研究连续两个 3D 点云的场景流估计问题。 在本文中, 提出一个具有双重关注的新等级神经网络, 以学习相邻框架点特征的关联性, 并精炼场景从粗糙层到细细层。 提议的网络有一个新的更实用的等级结构。 越不方便地表示, 场景流估计的输入点数量多于输出点的数量, 从而带来更多的投入信息, 并平衡精确和资源消耗量。 在这个等级结构中, 生成并分别监督不同水平的场景流。 引入了一个新的细微嵌入模块, 以了解相邻点的点特征, 使用一个双向匹配的方式, 精细的场景结构 。 在网络设计中, 仔细考虑流嵌入和流监督的适当层次结构 。 实验显示, 拟议的网络超越了我们Sli- 3 Stal- D 的动态 方向 数据流 显示我们 的系统流 方向 方向 的系统 的系统 显示 3 方向 方向 方向 方向 方向 方向 运行 运行 运行 运行 运行 运行 运行 的 运行 运行 运行 运行 运行 运行 运行 运行 运行 运行 运行 运行 运行 运行 运行 。

1
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
341+阅读 · 2020年1月27日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
RAFT-3D: Scene Flow using Rigid-Motion Embeddings
Arxiv
0+阅读 · 2020年12月1日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员