We prove that the active-set method needs an exponential number of iterations in the worst-case to maximize a convex quadratic function subject to linear constraints, regardless of the pivot rule used. This substantially improves over the best previously known lower bound [IPCO 2025], which needs objective functions of polynomial degrees $\omega(\log d)$ in dimension $d$, to a bound using a convex polynomial of degree 2. In particular, our result firmly resolves the open question [IPCO 2025] of whether a constant degree suffices, and it represents significant progress towards linear objectives, where the active-set method coincides with the simplex method and a lower bound for all pivot rules would constitute a major breakthrough. Our result is based on a novel extended formulation, recursively constructed using deformed products. Its key feature is that it projects onto a polygonal approximation of a parabola while preserving all of its exponentially many vertices. We define a quadratic objective that forces the active-set method to follow the parabolic boundary of this projection, without allowing any shortcuts along chords corresponding to edges of its full-dimensional preimage.


翻译:我们证明了在最坏情况下,无论采用何种主元规则,活动集法在最大化线性约束下的凸二次函数时需要指数级迭代次数。这显著改进了先前已知的最佳下界[IPCO 2025]——该下界需要维度$d$中多项式次数为$\omega(\log d)$的目标函数——将其推进到仅需使用二次凸多项式的情形。特别地,我们的结果彻底解决了[IPCO 2025]中提出的关于常数次数是否足够这一开放性问题,并为线性目标函数情形(此时活动集法与单纯形法等价)的研究取得重要进展——若能在该情形下建立适用于所有主元规则的下界,将构成重大突破。我们的证明基于一种通过变形积递归构造的新型扩展表述,其关键特性在于:该表述能投影到抛物线的多边形近似上,同时完整保留其指数级数量的顶点。我们定义了一个二次目标函数,迫使活动集法沿该投影的抛物线边界行进,且无法通过其全维原像边对应的弦进行任何捷径跨越。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员