In this paper, we shed new light on the generalization ability of deep learning-based solvers for Traveling Salesman Problems (TSP). Specifically, we introduce a two-player zero-sum framework between a trainable \emph{Solver} and a \emph{Data Generator}, where the Solver aims to solve the task instances provided by the Generator, and the Generator aims to generate increasingly difficult instances for improving the Solver. Grounded in \textsl{Policy Space Response Oracle} (PSRO) methods, our two-player framework outputs a population of best-responding Solvers, over which we can mix and output a combined model that achieves the least exploitability against the Generator, and thereby the most generalizable performance on different TSP tasks. We conduct experiments on a variety of TSP instances with different types and sizes. Results suggest that our Solvers achieve the state-of-the-art performance even on tasks the Solver never meets, whilst the performance of other deep learning-based Solvers drops sharply due to over-fitting. On real-world instances from \textsc{TSPLib}, our method also attains a \textbf{12\%} improvement, in terms of optimal gap, over the best baseline model. To demonstrate the principle of our framework, we study the learning outcome of the proposed two-player game and demonstrate that the exploitability of the Solver population decreases during training, and it eventually approximates the Nash equilibrium along with the Generator.


翻译:在本文中,我们重新展示了深层次学习型的销售员问题销售员问题(TSP)解决者深层次学习基础的游戏解决者的一般能力。 具体地说,我们引入了两个玩家的零和框架框架,在可训练的 emph{Solver} 和 emph{Data Ganger} 之间,在这两个框架中,Solfer 的目的是解决发电机提供的任务实例,而发电机的目的是产生日益困难的改进溶剂案例。我们的两个玩家框架基于\ textsl{ 政策空间反应Oracle} (PSRO) 方法,产生了一个反应最准确的溶剂群。我们可以混合并产生一个对发电机最不易利用的混合模型,从而在不同的TSP任务中取得最普遍的业绩。 我们的溶剂尝试了不同类型和大小的各种TSP案例。 结果表明,我们的溶剂甚至在溶剂的任务上达到了最先进的业绩,而其他深层次的学习型的溶剂的磨损率则由于差距的过大而下降。 在现实世界中,我们最接近的研究中,我们最接近地展示了我们最接近的结果是, 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月30日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员