Any novel medical imaging modality that differs from previous protocols e.g. in the number of imaging channels, introduces a new domain that is heterogeneous from previous ones. This common medical imaging scenario is rarely considered in the domain adaptation literature, which handles shifts across domains of the same dimensionality. In our work we rely on stochastic generative modeling to translate across two heterogeneous domains at pixel space and introduce two new loss functions that promote semantic consistency. Firstly, we introduce a semantic cycle-consistency loss in the source domain to ensure that the translation preserves the semantics. Secondly, we introduce a pseudo-labelling loss, where we translate target data to source, label them by a source-domain network, and use the generated pseudo-labels to supervise the target-domain network. Our results show that this allows us to extract systematically better representations for the target domain. In particular, we address the challenge of enhancing performance on VERDICT-MRI, an advanced diffusion-weighted imaging technique, by exploiting labeled mp-MRI data. When compared to several unsupervised domain adaptation approaches, our approach yields substantial improvements, that consistently carry over to the semi-supervised and supervised learning settings.
翻译:任何与以前的协议(如成像通道数量等)不同的新型医学成像模式,都会引入与先前的协议不同的新领域。这个共同的医疗成像假设情景很少在领域适应文献中得到考虑,它处理的是同一维度的各个领域的转移。在我们的工作中,我们依靠随机随机基因建模来翻译像素空间的两个不同领域,并引入两个新的损失功能,促进语义一致性。首先,我们在源域引入一种语义周期-周期一致性损失,以确保翻译保存语义学。第二,我们引入一种假标签损失,将目标数据翻译到源头,用源-域网络标记这些数据,并使用生成的假标签来监督目标-域网络。我们的结果显示,这使我们能够系统地为目标域选取更好的表达方式。特别是,我们应对提高VERDDICT-MRI的性能的挑战,这是一种先进的扩散加权成像技术,利用了贴有模-MRI的标签数据。与几个未受监控的域域适应方法相比,我们的方法产生了实质性的改进。