In this paper, we propose a theoretical analysis of the algorithm ISDE, introduced in previous work. From a dataset, ISDE learns a density written as a product of marginal density estimators over a partition of the features. We show that under some hypotheses, the Kullback-Leibler loss between the proper density and the output of ISDE is a bias term plus the sum of two terms which goes to zero as the number of samples goes to infinity. The rate of convergence indicates that ISDE tackles the curse of dimensionality by reducing the dimension from the one of the ambient space to the one of the biggest blocks in the partition. The constants reflect a combinatorial complexity reduction linked to the design of ISDE.
翻译:在本文中, 我们提议对在先前工作中引入的 ISDE 算法进行理论分析 。 从数据集中, ISDE 学会了一种密度, 以边际密度估计器的产物写成, 用于地貌的分割。 我们发现, 在一些假设下, 正确密度和 ISDE 输出之间的 Kullback- Leibeller 损失是一个偏差术语, 加上两个条件的总和, 加上当样品数量到达无限时, 就会达到零。 趋同率表明 ISDE 通过将环境空间的维度从环境空间的维度减少到分区中最大的区块之一, 来解决维度的诅咒 。 常数反映了与 ISDE 设计相关的组合复杂性降低 。