We consider the problem of sampling transition paths between two given metastable states of a molecular system, e.g. a folded and unfolded protein or products and reactants of a chemical reaction. Due to the existence of high energy barriers separating the states, these transition paths are unlikely to be sampled with standard Molecular Dynamics (MD) simulation. Traditional methods to augment MD with a bias potential to increase the probability of the transition rely on a dimensionality reduction step based on Collective Variables (CVs). Unfortunately, selecting appropriate CVs requires chemical intuition and traditional methods are therefore not always applicable to larger systems. Additionally, when incorrect CVs are used, the bias potential might not be minimal and bias the system along dimensions irrelevant to the transition. Showing a formal relation between the problem of sampling molecular transition paths, the Schr\"odinger bridge problem and stochastic optimal control with neural network policies, we propose a machine learning method for sampling said transitions. Unlike previous non-machine learning approaches our method, named PIPS, does not depend on CVs. We show that our method successful generates low energy transitions for Alanine Dipeptide as well as the larger Polyproline and Chignolin proteins.
翻译:暂无翻译