Safety-critical infrastructures must operate in a safe and reliable way. Fault tree analysis is a widespread method used for risk assessment of these systems: fault trees (FTs) are required by, e.g., the Federal Aviation Administration and the Nuclear Regulatory Commission. In spite of their popularity, little work has been done on formulating structural queries about FT and analyzing these, e.g., when evaluating potential scenarios, and to give practitioners instruments to formulate queries on FTs in an understandable yet powerful way. In this paper, we aim to fill this gap by extending BFL [32], a logic that reasons about Boolean FTs. To do so, we introduce a Probabilistic Fault tree Logic (PFL). PFL is a simple, yet expressive logic that supports easier formulation of complex scenarios and specification of FT properties that comprise probabilities. Alongside PFL, we present LangPFL, a domain specific language to further ease property specification. We showcase PFL and LangPFL by applying them to a COVID-19 related FT and to a FT for an oil/gas pipeline. Finally, we present theory and model checking algorithms based on binary decision diagrams (BDDs).


翻译:安全关键基础设施必须以安全可靠的方式运行。故障树分析是一种广泛用于风险评估的方法,需要符合例如联邦航空管理局和核监管委员会的要求。尽管备受青睐,但在关于FT的结构性查询和分析方面,很少有研究工作,例如在评估潜在情景时,给从业人员提供了在可理解但功能强大的方法上查询关于FT的工具。在本文中,我们旨在通过扩展BFL [32],一种关于布尔FT进行推理的逻辑来填补这一空白。为此,我们引入了一种基于概率的故障树逻辑(PFL)。PFL是一种简单但富有表现力的逻辑,支持更容易地制定复杂的场景和规定包含概率的FT属性。与PFL一起,我们提出了LangPFL,一种领域特定语言,进一步简化了属性规范。我们通过应用它们于COVID-19相关FT和油气管道FT来展示PFL和LangPFL。最后,我们提出了基于二进制决策图的理论和模型检查算法。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员