Wireless communications is often subject to channel fading. Various statistical models have been proposed to capture the inherent randomness in fading, and conventional model-based receiver designs rely on accurate knowledge of this underlying distribution, which, in practice, may be complex and intractable. In this work, we propose a neural network-based symbol detection technique for downlink fading channels, which is based on the maximum a-posteriori probability (MAP) detector. To enable training on a diverse ensemble of fading realizations, we propose a federated training scheme, in which multiple users collaborate to jointly learn a universal data-driven detector, hence the name FedRec. The performance of the resulting receiver is shown to approach the MAP performance in diverse channel conditions without requiring knowledge of the fading statistics, while inducing a substantially reduced communication overhead in its training procedure compared to centralized training.


翻译:无线通信往往会通过渠道消失。提出了各种统计模型,以捕捉消逝的内在随机性,传统的基于模型的接收器设计依靠对这一基本分布的准确了解,而这种分布实际上可能复杂而棘手。在这项工作中,我们提议对下链接淡化渠道采用基于神经网络的标志检测技术,该技术以最大速率(MAP)探测器为基础。为了能够就各种逐渐消退的发现组合进行培训,我们提议了一个联合培训计划,让多个用户合作共同学习一个通用的数据驱动探测器,因此名为FedRec。结果接收器的表现显示,在不要求了解淡化统计数据的情况下,在不同渠道条件下接近MAP的性能,与此同时,与集中培训相比,其培训程序中的通信间接费用大大减少。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年12月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年5月20日
Arxiv
0+阅读 · 2021年5月19日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年12月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员