In this work, we propose a convolutional neural network (CNN) based low-complexity approach for downlink (DL) channel estimation (CE) in frequency division duplex (FDD) systems. In contrast to existing work, we use training data which solely stems from the uplink (UL) domain. This allows to learn the CNN centralized at the base station (BS). After training, the network parameters are offloaded to mobile terminals (MTs) within the coverage area of the BS. The MTs can then obtain channel state information (CSI) of the MIMO channels with the low-complexity CNN estimator. This circumvents the necessity of an infeasible amount of feedback, i.e., acquisition of training data at the user, and the offline training phase at each MT. Numerical results show that the CNN which is trained solely based on UL data performs equally well as the network trained based on DL data. Furthermore, the approach is able to outperform state-of-the-art CE algorithms.


翻译:在这项工作中,我们建议对频率分部(FDD)系统中的下行链路(DL)频道估计(CE)采用基于动态神经网络(CNN)的低复杂度方法;与现有的工作不同,我们使用完全来自上行(UL)域的培训数据;这样就可以在基地站(BS)学习CNN集中的CNN。经过培训,网络参数被卸载到BS覆盖范围内的移动终端(MTs)。然后,MTs可以与低兼容CNN估计器获得MIMO频道的频道状态信息(CSI)。这避免了不可行的反馈的必要性,即用户获取培训数据,以及每个MT的离线培训阶段。数字结果显示,完全根据UL数据培训的CNN和根据DL数据培训的网络同样运行。此外,该方法能够超越先进的CE算法。

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
专知会员服务
162+阅读 · 2020年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
45+阅读 · 2019年12月20日
Learning Recommender Systems from Multi-Behavior Data
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员