In structural proof theory, designing and working on large calculi make it difficult to get intuitions about each rule individually and as part of a whole system. We introduce two novel tools to help working on calculi using the approach of graph theory and automata theory. The first tool is a Proof Tree Automaton (PTA): a tree automaton which language is the derivation language of a calculus. The second tool is a graphical representation of a calculus called Proof Tree Graph (PTG). In this directed hypergraph, vertices are sets of terms (e.g. sequents) and hyperarcs are rules. We explore properties of PTA and PTGs and how they relate to each other. We show that we can decompose a PTA as a partial map from a calculus to a traditional tree automaton. We formulate that statement in the theory of refinement systems. Finally, we compare our framework to proof nets and string diagrams.
翻译:在结构证据理论中,大型计算法的设计和操作使得很难个别地和作为整个系统的一部分获得对每项规则的直觉。 我们引入了两个新工具来帮助使用图形理论和自动数学理论的方法来计算计算计算。 第一个工具是“证明树Automaton ” 。 第一个工具是“证明树Automaton ” : 树自动图, 其语言是微积分的衍生语言。 第二个工具是称为“证明树图(PTG)” 的微积分图形表示。 在这个定向高射图中, 垂直是一系列术语( 如序列) 和超弧是规则。 我们探索 PTA 和 PTG 的属性, 以及它们彼此的关系。 我们显示我们可以将 PTA 作为从微积分到传统树自动数学的局部地图进行分解。 我们在精细系统理论中写出该语句。 最后, 我们将我们的框架与“证明网”和“字符图”加以比较。