Recently, text detection for arbitrary shape has attracted more and more search attention. Although segmentation-based methods, which are not limited by the text shape, have been studied to improve the performance, the slow detection speed, complicated post-processing, and text adhesion problem are still limitations for the practical application. In this paper, we propose a simple yet effective arbitrary-shape text detector, named Bold Outline Text Detector (BOTD). It is a novel one-stage detection framework with few post-processing processes. At the same time, the text adhesion problem can also be well alleviated. Specifically, BOTD first generates a center mask (CM) for each text instance, which makes the adhesive text easy to distinguish. Base on the CM, we further compute the polar minimum distance (PMD) for each text instance. PMD denotes the shortest distance between the center point of CM and the outline of the text instance. By dividing the text mask into CM and PMD, the outline of arbitrary-shape text instance can be obtained by simply predicting its CM and PMD. Without any bells and whistles, BOTD achieves an F-measure of 80.1% on CTW1500 with 52 FPS. Note that the post-processing time only accounts for 9% of the whole inference time. Code and trained models will be publicly available soon.


翻译:最近,对任意形状的文本检测吸引了越来越多的搜索关注。虽然对基于分解的方法进行了研究,这些方法不受文字形状的限制,但为了改进性能,已经对基于分解的方法进行了研究,但缓慢的检测速度、复杂的后处理和文本粘附问题仍然是实际应用的局限性。在本文中,我们提议了一个简单而有效的任意形状文本检测器,名为Bold Portural Text 检测器(BOTD),这是一个全新的单阶段检测框架,只有很少的后处理程序。与此同时,也可以很好地缓解文本粘合问题。具体地说,BOTD首先为每个文本实例制作了一个中心掩码(CMM),使粘合文本易于区分。在CMT的基础上,我们进一步计算每个文本实例的极度最低距离(PDD) 。PMD指出C 中心点与文本示例之间的最短距离。通过将文本掩码分为CMM和PMD,通过简单的预测其CMD和PMD来获得任意形状的大纲。在CMD上,没有经过任何经过培训的FPS-MD 10号和9PS-BTD之后, 将很快实现整个FD的80% 和9-PS-PS-PS-PS-PS-PS-PS-PT-xx-x-x-x-xxx-x-x-x-x-x-x-C-C-C-C-x-x-x-N-N-N-N-N-N-N-N-N-N-C-C-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N

0
下载
关闭预览

相关内容

【ICML2020】小样本目标检测
专知会员服务
90+阅读 · 2020年6月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2018年7月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2018年7月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
4+阅读 · 2016年12月29日
Top
微信扫码咨询专知VIP会员