Existing research on autonomous driving primarily focuses on urban driving, which is insufficient for characterising the complex driving behaviour underlying high-speed racing. At the same time, existing racing simulation frameworks struggle in capturing realism, with respect to visual rendering, vehicular dynamics, and task objectives, inhibiting the transfer of learning agents to real-world contexts. We introduce a new environment, where agents Learn-to-Race (L2R) in simulated competition-style racing, using multimodal information--from virtual cameras to a comprehensive array of inertial measurement sensors. Our environment, which includes a simulator and an interfacing training framework, accurately models vehicle dynamics and racing conditions. In this paper, we release the Arrival simulator for autonomous racing. Next, we propose the L2R task with challenging metrics, inspired by learning-to-drive challenges, Formula-style racing, and multimodal trajectory prediction for autonomous driving. Additionally, we provide the L2R framework suite, facilitating simulated racing on high-precision models of real-world tracks, such as the famed Thruxton Circuit and the Las Vegas Motor Speedway. Finally, we provide an official L2R task dataset of expert demonstrations, as well as a series of baseline experiments and reference implementations. We make all code available: https://github.com/hermgerm29/learn-to-race
翻译:关于自主驾驶的现有研究主要侧重于城市驾驶,这不足以说明高速赛背后的复杂驾驶行为。与此同时,现有的赛跑模拟框架在捕捉现实主义、视觉显示、车辆动态和任务目标方面挣扎,阻止将学习代理人转移到现实世界环境中。我们引入了一个新的环境,在模拟竞争式赛事中,代理从虚拟相机到一系列全面的惯性测量传感器的多式信息到拉赛(L2R),我们提供了从虚拟相机到一系列全面的惯性测量传感器的多式信息套件。我们的环境包括模拟器和互动培训框架、准确的车辆模型动态和赛跑条件。在本文中,我们发布了自动赛车的抵达模拟器模拟器。接下来,我们提出了具有挑战性指标的L2R任务,这是由学习到驱动的挑战、公式式赛事和自动驾驶的多式联运轨迹预测所启发的。此外,我们提供了L2R框架套件,便利在现实世界轨道的高精度模型上进行模拟赛跑,例如名的斯特顿路和拉斯格高速赛车动力/高速赛的模拟。最后,我们提供了一个具有挑战性的标码的在线专家/在线数据演示。我们提供了一个正式的参考。