We present a method for generating large numbers of isomorphic physics problems using generative AI services such as ChatGPT, through prompt chaining and tool use. This approach enables precise control over structural variations-such as numeric values and spatial relations-while supporting diverse contextual variations in the problem body. By utilizing the Python code interpreter, the method supports automatic solution validation and simple diagram generation, addressing key limitations in existing LLM-based methods. We generated two example isomorphic problem banks and compared the outcome against two simpler prompt-based approaches. Results show that prompt-chaining produces significantly higher quality and more consistent outputs than simpler, non-chaining prompts. We also show that GenAI services can be used to validate the quality of the generated isomorphic problems. This work demonstrates a promising method for efficient and scalable problem creation accessible to the average instructor, which opens new possibilities for personalized adaptive testing and automated content development.
翻译:本文提出了一种利用生成式人工智能服务(如ChatGPT)通过提示链与工具使用来大规模生成等构物理问题的方法。该方法能够精确控制结构变量(如数值与空间关系),同时支持问题主体中多样化的情境变化。通过利用Python代码解释器,该方法支持自动解题验证与简单图表生成,从而解决了现有基于大语言模型方法的关键局限。我们生成了两个示例性的等构问题库,并将其结果与两种更简单的基于提示的方法进行了比较。结果表明,提示链方法相比非链式简单提示能产生显著更高质量且更一致的输出。我们还证明了生成式人工智能服务可用于验证所生成等构问题的质量。这项工作展示了一种可供普通教师使用的高效、可扩展的问题生成方法,为个性化自适应测试与自动化内容开发开辟了新的可能性。