Winner-take-all competitions in forecasting and machine-learning suffer from distorted incentives. Witkowskiet al. identified this problem and proposed ELF, a truthful mechanism to select a winner. We show that, from a pool of $n$ forecasters, ELF requires $\Theta(n\log n)$ events or test data points to select a near-optimal forecaster with high probability. We then show that standard online learning algorithms select an $\epsilon$-optimal forecaster using only $O(\log(n) / \epsilon^2)$ events, by way of a strong approximate-truthfulness guarantee. This bound matches the best possible even in the nonstrategic setting. We then apply these mechanisms to obtain the first no-regret guarantee for non-myopic strategic experts.


翻译:预测和机器学习方面的赢家-赢家-赢家-赢家-赢家-赢家-赢家-赢家-赢家-赢家-赢家-学习竞赛受到扭曲的激励。 Witkowskiet al. 发现了这个问题,并提出了ELF, 这是一种选择赢家的诚实机制。 我们从一个美元预测器中显示, ELF需要$\ Theta( n\log n) 的事件或测试数据点来选择一个概率高的近乎最佳的预测器。 然后我们显示, 标准在线学习算法只选择一个美元/ 百分数- 最佳的预测器, 仅使用 $O( log(n) /\ epsilon=2) 的事件, 以强烈的近似真实性保证方式选择 。 这一约束与即使在非战略环境下也尽可能匹配。 然后我们运用这些机制来为非战略专家获得第一个无风险保证。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
已删除
将门创投
11+阅读 · 2019年4月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年4月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员