We describe a new dataset of software mentions in biomedical papers. Plain-text software mentions are extracted with a trained SciBERT model from several sources: the NIH PubMed Central collection and from papers provided by various publishers to the Chan Zuckerberg Initiative. The dataset provides sources, context and metadata, and, for a number of mentions, the disambiguated software entities and links. We extract 1.12 million unique string software mentions from 2.4 million papers in the NIH PMC-OA Commercial subset, 481k unique mentions from the NIH PMC-OA Non-Commercial subset (both gathered in October 2021) and 934k unique mentions from 3 million papers in the Publishers' collection. There is variation in how software is mentioned in papers and extracted by the NER algorithm. We propose a clustering-based disambiguation algorithm to map plain-text software mentions into distinct software entities and apply it on the NIH PubMed Central Commercial collection. Through this methodology, we disambiguate 1.12 million unique strings extracted by the NER model into 97600 unique software entities, covering 78% of all software-paper links. We link 185000 of the mentions to a repository, covering about 55% of all software-paper links. We describe in detail the process of building the datasets, disambiguating and linking the software mentions, as well as opportunities and challenges that come with a dataset of this size. We make all data and code publicly available as a new resource to help assess the impact of software (in particular scientific open source projects) on science.


翻译:我们描述的是生物医学论文中提及的软件的新数据集。 平文本软件引用了来自以下几个来源的经过培训的 SciBERT 模型: NIH PubMed Central 集和各出版商向Chan Zuckerberg 倡议提供的论文。 数据集提供了源、 上下文和元数据, 以及一些隐含的软件实体和链接。 我们从NIH PMC-OA 商业子集中的240万篇论文中提取了112万个独特的字符串。 481k 独有的引用来自NIH PMC-OA Non-Commercial子集( 两者均于2021年10月收集) 和934k 独有的引用来自出版商收藏的300万份论文。 在纸张中和NER 算法中如何引用软件, 提供了各种源、 背景、 直线、 直线和中央商业收藏。 我们用NER 模型所提取的112万个独有的字符串, 包括了所有软体的软件的78%的大小。 我们用软件链接, 将所有数据库链接连接到185 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月28日
Arxiv
0+阅读 · 2022年10月28日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员