We introduce a novel framework for optimization based on energy-conserving Hamiltonian dynamics in a strongly mixing (chaotic) regime and establish its key properties analytically and numerically. The prototype is a discretization of Born-Infeld dynamics, with a squared relativistic speed limit depending on the objective function. This class of frictionless, energy-conserving optimizers proceeds unobstructed until slowing naturally near the minimal loss, which dominates the phase space volume of the system. Building from studies of chaotic systems such as dynamical billiards, we formulate a specific algorithm with good performance on machine learning and PDE-solving tasks, including generalization. It cannot stop at a high local minimum and cannot overshoot the global minimum, yielding an advantage in non-convex loss functions, and proceeds faster than GD+momentum in shallow valleys.
翻译:我们引入了一个基于节能的汉密尔顿动力学的新优化框架, 在一个强大的混合( 卫生) 系统中, 并用分析和数字来建立其关键特性。 原型是Born-Infeld动力学的分解, 其平方相对速度限制取决于客观功能。 这种无摩擦、节能优化剂的运行不受阻碍, 直至自然地放慢到能控制系统空间量的最小损耗水平。 我们从对动态扁桃类等混乱系统的研究中, 设计出一种在机器学习和PDE解决任务( 包括一般化) 上表现良好的特定算法。 它不能停留在高地方, 不能超过全球最低速度, 在非电流损失功能中产生优势, 并且比浅谷的 GD+momentum 速度更快。