We study the problem of finding an exact solution to the consensus halving problem. While recent work has shown that the approximate version of this problem is PPA-complete, we show that the exact version is much harder. Specifically, finding a solution with $n$ cuts is FIXP-hard, and deciding whether there exists a solution with fewer than $n$ cuts is ETR-complete. We also give a QPTAS for the case where each agent's valuation is a polynomial. Along the way, we define a new complexity class BU, which captures all problems that can be reduced to solving an instance of the Borsuk-Ulam problem exactly. We show that FIXP $\subseteq$ BU $\subseteq$ TFETR and that LinearBU $=$ PPA, where LinearBU is the subclass of BU in which the Borsuk-Ulam instance is specified by a linear arithmetic circuit.
翻译:我们研究了如何找到一个准确解决将问题减半的共识问题。 尽管最近的工作表明,这一问题的大致版本是PPA完成的, 我们却表明, 确切的版本要难得多。 具体地说, 找到一个用美元削减的解决方案是FIXP-hard, 并且决定是否有一个低于美元削减的解决方案是 ETR 完成的。 我们还给出了针对每个代理商估值是多元数字的案例中的 QPTAS 。 沿途, 我们定义了一个新的复杂分类 BU, 它将囊括所有可以降低到解决Borsuk- Ulam问题的例子中的问题。 我们显示, FIXP $\ subseteq$ BU $\ subseqeq$ TFETR 和 LinearBU $= PPA, 其中, LunarBU是BU是B的子BU, 其中BOrsuk- Ulam 例是由线性算法确定的。