We address inference for a partially observed nonlinear non-Gaussian latent stochastic system comprised of interacting units. Each unit has a state, which may be discrete or continuous, scalar or vector valued. In biological applications, the state may represent a structured population or the abundances of a collection of species at a single location. Units can have spatial locations, allowing the description of spatially distributed interacting populations arising in ecology, epidemiology and elsewhere. We consider models where the collection of states is a latent Markov process, and a time series of noisy or incomplete measurements is made on each unit. A model of this form is called a spatiotemporal partially observed Markov process (SpatPOMP). The R package spatPomp provides an environment for implementing SpatPOMP models, analyzing data, and developing new inference approaches. We describe the spatPomp implementations of some methods with scaling properties suited to SpatPOMP models. We demonstrate the package on a simple Gaussian system and on a nontrivial epidemiological model for measles transmission within and between cities. We show how to construct user-specified SpatPOMP models within spatPomp.
翻译:我们处理由互动单位组成的部分观测的非线性非Gausian潜伏随机系统的推论。每个单位都有一个状态,可以是离散或连续的、卡路里或矢量的价值。在生物应用中,国家可以代表一个地点的有结构的种群或物种群的丰度。单位可以有空间位置,可以描述在生态、流行病学和其他地方产生的空间分布的相互作用种群。我们考虑的是国家收集是一个潜伏的Markov过程和对每个单位进行一系列时间性噪音或不完整测量的模型。这种形态的模型称为波多波多波多波多波多波多部分观测马可波多过程(SpatPOPMP )。R包跳波多普提供了一种环境,用于实施SpatPOPM模型、分析数据以及开发新的推论方法。我们描述了某些具有适合SpatPOPMP模型的缩放特性的方法的孔多执行情况。我们展示了简单的高斯系统和城市内部麻疹传播的非边缘流行病学模型。我们展示了如何构建用户定义的SpatPatPOPMP模型。