We address inference for a partially observed nonlinear non-Gaussian latent stochastic system comprised of interacting units. Each unit has a state, which may be discrete or continuous, scalar or vector valued. In biological applications, the state may represent a structured population or the abundances of a collection of species at a single location. Units can have spatial locations, allowing the description of spatially distributed interacting populations arising in ecology, epidemiology and elsewhere. We consider models where the collection of states is a latent Markov process, and a time series of noisy or incomplete measurements is made on each unit. A model of this form is called a spatiotemporal partially observed Markov process (SpatPOMP). The R package spatPomp provides an environment for implementing SpatPOMP models, analyzing data, and developing new inference approaches. We describe the spatPomp implementations of some methods with scaling properties suited to SpatPOMP models. We demonstrate the package on a simple Gaussian system and on a nontrivial epidemiological model for measles transmission within and between cities. We show how to construct user-specified SpatPOMP models within spatPomp.


翻译:我们处理由互动单位组成的部分观测的非线性非Gausian潜伏随机系统的推论。每个单位都有一个状态,可以是离散或连续的、卡路里或矢量的价值。在生物应用中,国家可以代表一个地点的有结构的种群或物种群的丰度。单位可以有空间位置,可以描述在生态、流行病学和其他地方产生的空间分布的相互作用种群。我们考虑的是国家收集是一个潜伏的Markov过程和对每个单位进行一系列时间性噪音或不完整测量的模型。这种形态的模型称为波多波多波多波多波多波多部分观测马可波多过程(SpatPOPMP )。R包跳波多普提供了一种环境,用于实施SpatPOPM模型、分析数据以及开发新的推论方法。我们描述了某些具有适合SpatPOPMP模型的缩放特性的方法的孔多执行情况。我们展示了简单的高斯系统和城市内部麻疹传播的非边缘流行病学模型。我们展示了如何构建用户定义的SpatPatPOPMP模型。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
0+阅读 · 2021年6月26日
Arxiv
20+阅读 · 2021年2月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员