Inspired by the demands of real-time climate and weather forecasting, we develop optimistic online learning algorithms that require no parameter tuning and have optimal regret guarantees under delayed feedback. Our algorithms -- DORM, DORMP, and AdaHedgeD -- arise from a novel reduction of delayed online learning to optimistic online learning that reveals how optimistic hints can mitigate the regret penalty caused by delay. We pair this delay-as-optimism perspective with a new analysis of optimistic learning that exposes its robustness to hinting errors and a new meta-algorithm for learning effective hinting strategies in the presence of delay. We conclude by benchmarking our algorithms on four subseasonal climate forecasting tasks, demonstrating low regret relative to state-of-the-art forecasting models.
翻译:受实时气候和天气预报要求的启发,我们开发了乐观的在线学习算法,这些算法不需要参数调整,在延迟反馈下有最佳的遗憾保障。我们的算法 -- -- DORM、DORMP和AdaHedgeD -- -- 产生于新颖的延迟在线学习,以显示乐观的提示可以减轻延迟造成的遗憾惩罚。我们把这种迟到乐观的观点与乐观的乐观学习的新分析相提并论,这种分析将它暴露为暗示错误的稳健性和在延迟情况下学习有效暗示战略的新的元值。我们最后通过将我们的算法以四种季节以下气候预报任务为基准,显示了相对于最新预测模型的低遗憾。