User-side group fairness is crucial for modern recommender systems, as it aims to alleviate performance disparity between groups of users defined by sensitive attributes such as gender, race, or age. We find that the disparity tends to persist or even increase over time. This calls for effective ways to address user-side fairness in a dynamic environment, which has been infrequently explored in the literature. However, fairness-constrained re-ranking, a typical method to ensure user-side fairness (i.e., reducing performance disparity), faces two fundamental challenges in the dynamic setting: (1) non-differentiability of the ranking-based fairness constraint, which hinders the end-to-end training paradigm, and (2) time-inefficiency, which impedes quick adaptation to changes in user preferences. In this paper, we propose FAir Dynamic rEcommender (FADE), an end-to-end framework with fine-tuning strategy to dynamically alleviate performance disparity. To tackle the above challenges, FADE uses a novel fairness loss designed to be differentiable and lightweight to fine-tune model parameters to ensure both user-side fairness and high-quality recommendations. Via extensive experiments on the real-world dataset, we empirically demonstrate that FADE effectively and efficiently reduces performance disparity, and furthermore, FADE improves overall recommendation quality over time compared to not using any new data.
翻译:暂无翻译