Theory of mind (ToM; Premack & Woodruff, 1978) broadly refers to humans' ability to represent the mental states of others, including their desires, beliefs, and intentions. We propose to train a machine to build such models too. We design a Theory of Mind neural network -- a ToMnet -- which uses meta-learning to build models of the agents it encounters, from observations of their behaviour alone. Through this process, it acquires a strong prior model for agents' behaviour, as well as the ability to bootstrap to richer predictions about agents' characteristics and mental states using only a small number of behavioural observations. We apply the ToMnet to agents behaving in simple gridworld environments, showing that it learns to model random, algorithmic, and deep reinforcement learning agents from varied populations, and that it passes classic ToM tasks such as the "Sally-Anne" test (Wimmer & Perner, 1983; Baron-Cohen et al., 1985) of recognising that others can hold false beliefs about the world. We argue that this system -- which autonomously learns how to model other agents in its world -- is an important step forward for developing multi-agent AI systems, for building intermediating technology for machine-human interaction, and for advancing the progress on interpretable AI.


翻译:思想理论(TOM;Premack & Woodruff,1978年) 广义地指人代表他人精神状态的能力(ToM;Premack & Woodruff,1978年), 广义地指人代表他人精神状态的能力, 包括他们的愿望、 信仰和意图。 我们提议训练机器来建立这样的模型。 我们设计了一个心灵神经网络的理论 -- -- ToMnet -- -- 使用元学习来建立它所碰到的代理人的模型, 仅仅通过观察他们的行为。 通过这一过程, 它获得了一个强大的先前的代理人行为的模型, 并且能够利用少量的行为观察, 对代理人的特征和精神状态进行更丰富的预测。 我们用TOMnet来训练在简单的电网环境中工作的代理人, 显示它学会了随机、 算法和 深度强化的学习媒介网络 -- -- 并且它通过了典型的托姆任务, 例如“ Sally-Anne” 测试(Wimmer & Perner, 1983年; Baron- Cohen et et al.) 等, 通过这个过程, 承认其他人可以对世界持有虚假的信念。 我们说, 这个系统 -- -- -- 是如何自主地学习如何在数字机构间互动上建立模型的模型, 如何向前向前进, 如何建立模型, 如何发展, 是一个重要的一步。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
24+阅读 · 2019年11月24日
Arxiv
7+阅读 · 2018年6月1日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月28日
Arxiv
5+阅读 · 2017年10月27日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
45+阅读 · 2019年12月20日
Arxiv
24+阅读 · 2019年11月24日
Arxiv
7+阅读 · 2018年6月1日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月28日
Arxiv
5+阅读 · 2017年10月27日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员