In a technical treatment, this article establishes the necessity of transparent privacy for drawing unbiased statistical inference for a wide range of scientific questions. Transparency is a distinct feature enjoyed by differential privacy: the probabilistic mechanism with which the data are privatized can be made public without sabotaging the privacy guarantee. Uncertainty due to transparent privacy may be conceived as a dynamic and controllable component from the total survey error perspective. As the 2020 U.S. Decennial Census adopts differential privacy, constraints imposed on the privatized data products through optimization constitute a threat to transparency and result in limited statistical usability. Transparent privacy presents a viable path toward principled inference from privatized data releases, and shows great promise toward improved reproducibility, accountability, and public trust in modern data curation.
翻译:在技术处理中,这一条确立了对一系列广泛的科学问题进行公正的统计推断时必须有透明隐私的必要性。透明度是不同隐私享有的一个独特特征:数据私有化的概率机制可以在不破坏隐私保障的情况下被公诸于众。从全面调查错误的角度来看,由于透明度的不确定性可被视为动态和控制的组成部分。2020年美国十年人口普查采用了不同的隐私,通过优化对私营化数据产品施加的限制对透明度构成了威胁,并导致统计可用性有限。透明隐私为从私营化数据发布中得出原则性推论提供了一条可行的途径,并展示了改善可复制性、问责制和公众对现代数据整理的信任的巨大前景。