Recently, Chatterjee (2021) introduced a new rank-based correlation coefficient which can be used to test for independence between two random variables. His test has already attracted much attention as it is distribution-free, consistent against all fixed alternatives, asymptotically normal under the null hypothesis of independence and computable in (near) linear time; thereby making it appropriate for large-scale applications. However, not much is known about the power properties of this test beyond consistency against fixed alternatives. In this paper, we bridge this gap by obtaining the asymptotic distribution of Chatterjee's correlation under any changing sequence of alternatives "converging" to the null hypothesis (of independence). We further obtain a general result that gives exact detection thresholds and limiting power for Chatterjee's test of independence under natural nonparametric alternatives "converging" to the null. As applications of this general result, we prove a non-standard $n^{-1/4}$ detection boundary for this test and compute explicitly the limiting local power on the detection boundary, for popularly studied alternatives in literature such as mixture models, rotation models and noisy nonparametric regression. Moreover our convergence results provide explicit finite sample bounds that depend on the "distance" between the null and the alternative. Our proof techniques rely on second order Poincar\'{e} type inequalities and a non-asymptotic projection theorem.


翻译:最近,查特杰(2021年)引入了一个新的基于等级的关联系数,可以用来测试两个随机变量的独立性。他的测试已经引起了很大的注意,因为它是无分配的,与所有固定的替代物一致,在(近近)线性时间的完全独立假设下是正常的;因此它适合大规模应用。然而,对于这项测试的功率特性,我们并不十分了解,除了对固定的替代物的一致性之外,也没有多少人知道。在本文中,我们通过获得查特杰相关性在任何变化的替代物“趋同”的序列下无分配性分布来弥补这一差距。我们进一步获得了一个总的结果,在自然的非参数替代物“趋同”和(近)线性线性计算下,恰特杰的独立测试能力得到了精确的临界值,从而限制了查特杰相关性的无序分布,在任何变化的替代物“趋同”与(独立)假设的序列下,我们获得了精确的检测阈值阈值值值值值值值值值值值,在混合模型、轮值模型和焦非偏差性不偏差性对比值的精确度模型上,我们的精确度的回归值提供了我们的统一值。

0
下载
关闭预览

相关内容

专知会员服务
100+阅读 · 2020年7月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
已删除
将门创投
9+阅读 · 2019年11月15日
Arxiv
0+阅读 · 2021年6月17日
Deep Comparison: Relation Columns for Few-Shot Learning
VIP会员
相关资讯
已删除
将门创投
9+阅读 · 2019年11月15日
Top
微信扫码咨询专知VIP会员