We provide an optimization-based framework to perform counterfactual analysis in a dynamic model with hidden states. Our framework is grounded in the "abduction, action, and prediction" approach to answer counterfactual queries and handles two key challenges where (1) the states are hidden and (2) the model is dynamic. Recognizing the lack of knowledge on the underlying causal mechanism and the possibility of infinitely many such mechanisms, we optimize over this space and compute upper and lower bounds on the counterfactual quantity of interest. Our work brings together ideas from causality, state-space models, simulation, and optimization, and we apply it on a breast cancer case study. To the best of our knowledge, we are the first to compute lower and upper bounds on a counterfactual query in a dynamic latent-state model.
翻译:我们提供了一个基于优化的框架,以在隐藏状态的动态模型中进行反事实分析。我们的框架以“诱导、行动和预测”方法为基础,以回答反事实质询,并处理以下两大挑战:(1) 国家被隐藏,(2) 模式是动态的。 我们认识到对根本因果机制缺乏了解,而且可能存在无数此类机制,因此我们优化了这一空间,并计算了反事实利益数量的上限和下限。我们的工作汇集了因果关系、状态空间模型、模拟和优化等观点,我们将其应用于乳腺癌案例研究。 据我们所知,我们首先在动态的潜伏状态模型中计算反事实质查询的下限和上限。