Series of distributions indexed by equally spaced time points are ubiquitous in applications and their analysis constitutes one of the challenges of the emerging field of distributional data analysis. To quantify such distributional time series, we propose a class of intrinsic autoregressive models that operate in the space of optimal transport maps. The autoregressive transport models that we introduce here are based on regressing optimal transport maps on each other, where predictors can be transport maps from an overall barycenter to a current distribution or transport maps between past consecutive distributions of the distributional time series. Autoregressive transport models and associated distributional regression models specify the link between predictor and response transport maps by moving along geodesics in Wasserstein space. These models emerge as natural extensions of the classical autoregressive models in Euclidean space. Unique stationary solutions of autoregressive transport models are shown to exist under a geometric moment contraction condition of Wu and Shao (2004), using properties of iterated random functions. We also discuss an extension to a varying coefficient coefficient for first order autoregressive transport models. In addition to simulations, the proposed models are illustrated with distributional time series of house prices across U.S. counties and of stock returns across the S&P 500 stock index.
翻译:以同样时点索引的分布分布系列分布分布分布在各种应用中普遍存在,其分析是正在形成的分布数据分析领域的挑战之一。为了量化这种分布时间序列,我们建议了一组内在自动递减模型,这些模型在最佳运输地图空间内运行。我们在此采用的自动递减运输模型基于相互向后退的最佳运输地图,预测器可以将分布时间序列过去连续分布的分布图从一个总中点运到一个当前分布或运输图中。自动递增运输模型和相关分布回归模型通过在瓦塞尔斯坦空间沿大地偏移移动来确定预测和响应运输地图之间的联系。这些模型是作为古型自动递减模型在欧克里德空间的自然延伸而出现的。自动递减运输模型的不固定解决方案在吴和绍的几何时收缩状态下存在(2004年),使用循环随机功能的特性。我们还讨论将第一个顺序自动递减运输模型的系数扩大至对应的分布图和反应图。除了模拟的S级价格外,还绘制了S型号序列的模型。