We study the problem of observational causal inference with continuous treatment. We focus on the challenge of estimating the causal response curve for infrequently-observed treatment values. We design a new algorithm based on the framework of entropy balancing which learns weights that directly maximize causal inference accuracy using end-to-end optimization. Our weights can be customized for different datasets and causal inference algorithms. We propose a new theory for consistency of entropy balancing for continuous treatments. Using synthetic and real-world data, we show that our proposed algorithm outperforms the entropy balancing in terms of causal inference accuracy.


翻译:我们研究持续处理的观察因果推断问题。我们侧重于估算不经常观察的治疗值的因果反应曲线的挑战。我们设计了一种新的算法,其基础是酶平衡框架,通过端到端优化学习能够直接最大限度地实现因果推断准确性的权重。我们的权重可以针对不同的数据集和因果推断算法进行定制。我们为连续处理的酶平衡的一致性提出了一个新理论。我们使用合成和真实世界的数据,我们表明我们提议的算法在因果推断准确性方面优于酶平衡。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
面向健康的大数据与人工智能,103页ppt
专知会员服务
108+阅读 · 2020年12月29日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Structure Learning for Directed Trees
Arxiv
0+阅读 · 2021年9月28日
Arxiv
0+阅读 · 2021年9月26日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
VIP会员
相关VIP内容
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
面向健康的大数据与人工智能,103页ppt
专知会员服务
108+阅读 · 2020年12月29日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员