In histology, the presence of collagen in the extra-cellular matrix has both diagnostic and prognostic value for cancer malignancy, and can be highlighted by adding Saffron (S) to a routine Hematoxylin and Eosin (HE) staining. However, Saffron is not usually added because of the additional cost and because pathologists are accustomed to HE, with the exception of France-based laboratories. In this paper, we show that it is possible to quantify the collagen content from the HE image alone and to digitally create an HES image. To do so, we trained a UNet to predict the Saffron densities from HE images. We created a dataset of registered, restained HE-HES slides and we extracted the Saffron concentrations as ground truth using stain deconvolution on the HES images. Our model reached a Mean Absolute Error of 0.0668 $\pm$ 0.0002 (Saffron values between 0 and 1) on a 3-fold testing set. We hope our approach can aid in improving the clinical workflow while reducing reagent costs for laboratories.
翻译:在生理学上,在细胞外矩阵中存在科洛林对癌症恶性反应具有诊断和预测价值,通过将藏红花(S)添加到常规的Hematoxylin和Eosin(He)污点中可以突出显示。然而,沙红花通常不会添加,因为成本增加,而且病理学家习惯于HE,除了法国实验室之外。在本文中,我们表明,有可能单独从HE图像中量化科拉根含量,并以数字方式生成HES图像。为此,我们培训了一个UNet,从HE图像中预测藏红花密度。我们制作了一套已登记、已保存的HE-HES幻灯片数据集,并利用HES图像的污点变异性提取了萨芙朗浓度作为地面真象。我们的模型在3倍测试组上达到0.0668美元/pm0.002的绝对误差。我们希望我们的方法能够帮助改进临床工作流程,同时降低实验室的试剂成本。