We study the correspondence theory of intuitionistic modal logic in modal Fairtlough-Mendler semantics (modal FM semantics) \cite{FaMe97}, which is the intuitionistic modal version of possibility semantics \cite{Ho16}. We identify the fragment of inductive formulas \cite{GorankoV06} in this language and give the algorithm $\mathsf{ALBA}$ \cite{CoPa12} in this semantic setting. There are two major features in the paper: one is that in the expanded modal language, the nominal variables, which are interpreted as atoms in perfect Boolean algebras, complete join-prime elements in perfect distributive lattices and complete join-irreducible elements in perfect lattices, are interpreted as the refined regular open closures of singletons in the present setting, similar to the possibility semantics for classical normal modal logic \cite{Zh21d}; the other feature is that we do not use conominals or diamond, which restricts the fragment of inductive formulas significantly. We prove the soundness of the $\mathsf{ALBA}$ with respect to modal FM frames and show that the $\mathsf{ALBA}$ succeeds on inductive formulas, similar to existing settings like \cite{CoPa12,Zh21d,Zh22a}.
翻译:我们用这种语言来研究直觉模式逻辑的对应理论。 我们在这个语义设置中给出了算法 $\mathsf{ALBA} $\cite{CoPA12} 。 纸张中有两个主要特征: 一种是扩大的语义, 名义变量, 被解释为完全的布列安代布拉斯的原子, 完全的组合主要元素 完全的分布式拉特和完全的连锁元素, 被解释为当前设置中精细的单吨定期开放关闭, 类似于经典正常模式逻辑的可能性 \cite{CoPA12} ; 另一种特征是, 我们不使用正调方言中的原子, 类似方言的方言框, 以及正言方方方方方形的缩略图 。