Traditional data augmentation aims to increase the coverage of the input distribution by generating augmented examples that strongly resemble original samples in an online fashion where augmented examples dominate training. In this paper, we propose an alternative perspective -- a multi-task view (MTV) of data augmentation -- in which the primary task trains on original examples and the auxiliary task trains on augmented examples. In MTV data augmentation, both original and augmented samples are weighted substantively during training, relaxing the constraint that augmented examples must resemble original data and thereby allowing us to apply stronger levels of augmentation. In empirical experiments using four common data augmentation techniques on three benchmark text classification datasets, we find that the MTV leads to higher and more robust performance improvements than traditional augmentation.
翻译:传统数据扩增的目的是扩大投入分布的覆盖面,方法是产生更多例子,在培训以强化实例为主的在线方式与原始样本非常相似。在本文中,我们提出了另一种观点 -- -- 数据扩增的多任务视图(MTV) -- -- 即以原始实例为主的初级任务列车和以强化示例为主的辅助任务列车。在MTV数据扩增中,原始和扩增的样本在培训过程中都进行了实质性加权,放宽了增加示例必须与原始数据相仿的制约,从而使我们能够应用更强的增强度。在使用三种基准文本分类数据集的四种共同数据扩增技术的实验中,我们发现MTV导致比传统增扩增的更高、更强大的性能改进。