This paper studies the family of sliced Cram\'er metrics, quantifying their stability under distortions of the input functions. Our results bound the growth of the sliced Cram\'er distance between a function and its geometric deformation by the product of the deformation's displacement size and the function's mean mixed norm. These results extend to sliced Cram\'er distances between tomographic projections. In addition, we remark on the effect of convolution on the sliced Cram\'er metrics. We also analyze efficient Fourier-based discretizations in 1D and 2D, and prove that they are robust to heteroscedastic noise. The results are illustrated by numerical experiments.


翻译:本文研究了切片Cramér度量族,量化了其在输入函数畸变下的稳定性。我们的结果通过畸变位移大小与函数平均混合范数的乘积,界定了函数与其几何形变之间切片Cramér距离的增长。这些结果可推广至层析投影间的切片Cramér距离。此外,我们探讨了卷积对切片Cramér度量的影响。我们还分析了一维和二维中基于傅里叶的高效离散化方法,并证明其对异方差噪声具有鲁棒性。数值实验验证了上述结论。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员