We consider a novel backward-compatible paradigm of general data analytics over a recently-reported semisimple algebra (called t-algebra). We study the abstract algebraic framework over the t-algebra by representing the elements of t-algebra by fix-sized multi-way arrays of complex numbers and the algebraic structure over the t-algebra by a collection of direct-product constituents. Over the t-algebra, many algorithms, if not all, are generalized in a straightforward manner using this new semisimple paradigm. To demonstrate the new paradigm's performance and its backward-compatibility, we generalize some canonical algorithms for visual pattern analysis. Experiments on public datasets show that the generalized algorithms compare favorably with their canonical counterparts.
翻译:我们认为,对于最近报告的半显性代数(称为 t-algebra ) 来说,一般数据分析的后向兼容模式是一个新颖的样板。 我们研究T-algebra的抽象代数框架,通过固定规模的复杂数字多路阵列来代表t-algebra的元素,并通过收集直接产品成份来代表t-algebra的代数结构。 在t-albra 上,许多算法,如果不是全部的话,都以直截了当的方式使用这种新的半显性范数。为了展示新范数的性能及其后向兼容性,我们将一些卡通算法用于视觉模式分析。 对公共数据集的实验表明,通用算法与其典型对应法相比是优异的。