Wind power forecasting has drawn increasing attention among researchers as the consumption of renewable energy grows. In this paper, we develop a deep learning approach based on encoder-decoder structure. Our model forecasts wind power generated by a wind turbine using its spatial location relative to other turbines and historical wind speed data. In this way, we effectively integrate spatial dependency and temporal trends to make turbine-specific predictions. The advantages of our method over existing work can be summarized as 1) it directly predicts wind power based on historical wind speed, without the need for prediction of wind speed first, and then using a transformation; 2) it can effectively capture long-term dependency 3) our model is more scalable and efficient compared with other deep learning based methods. We demonstrate the efficacy of our model on the benchmark real-world datasets.
翻译:随着可再生能源消耗的增长,风能预测在研究人员中引起了越来越多的关注。在本文中,我们根据编码器-编码器结构制定了深层次的学习方法。模型预测风力涡轮机产生的风力,利用空间位置与其他涡轮机相对,并使用历史风速数据。这样,我们有效地整合了空间依赖性和时间趋势,以作出针对具体涡轮的预测。我们的方法优于现有工作,可以概括为:(1)它直接预测基于历史风速的风力,无需先预测风速,然后进行转换;(2)它能够有效捕捉长期依赖性;(3)我们的模式与其他深层次的基于学习的方法相比,更可扩缩和高效。我们展示了我们关于基准真实世界数据集的模型的功效。