Educational achievement distributions for Australian indigenous and nonindigenous populations in the years 2001, 2006, 2014 and 2017 are considered. Bayesian inference is used to analyse how these ordinal categorical distributions have changed over time and to compare indigenous and nonindigenous distributions. Both the level of educational achievement and inequality in educational achievement are considered. To compare changes in levels over time, as well as inequality between the two populations, first order stochastic dominance and an index of educational poverty are used. To examine changes in inequality over time, two inequality indices and generalised Lorenz dominance are considered. Results are presented in terms of posterior densities for the indices and posterior probabilities for dominance for the dominance comparisons. We find some evidence of improvement over time, especially in the lower parts of the indigenous distribution and that inequality has significantly increased from 2001 to 2017.


翻译:2001年、2006年、2014年和2017年澳大利亚土著和非土著人口教育成就分配情况得到考虑; 贝叶斯推论用于分析这些异常绝对分布随时间推移的变化,比较土著和非土著分布情况; 考虑教育成就水平和教育水平不平等情况; 比较长期水平的变化,以及两个人口之间的不平等情况; 采用第一顺序的主导地位和教育贫困指数; 为审查长期不平等情况的变化,考虑两个不平等指数和普世的洛伦茨主导地位; 以指数的后部密度和支配地位比较的后部概率为结果; 我们发现一些证据表明,在一段时间内,特别是在土著分布的较低部分,不平等情况在2001年至2017年期间明显加剧。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
专知会员服务
33+阅读 · 2021年10月9日
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
因果关联学习,Causal Relational Learning
专知会员服务
183+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月20日
Arxiv
0+阅读 · 2021年10月16日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年10月9日
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
因果关联学习,Causal Relational Learning
专知会员服务
183+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员