Proactive tile-based virtual reality (VR) video streaming can use the trace of FoV and eye movement to predict future requested tiles, then renders and delivers the predicted tiles before playback. The quality of experience (QoE) depends on the combined effect of tile prediction and consumed resources. Recently, it has been found that with the FoV and eye movement data collected for a user, one can infer the identity and preference of the user. Existing works investigate the privacy protection for eye movement, but never address how to protect the privacy in terms of FoV and how the privacy protection affects the QoE. In this paper, we strive to characterize and satisfy the FoV privacy requirement. We consider "trading resources for privacy". We first add camouflaged tile requests around the real FoV and define spatial degree of privacy (SDoP) as a normalized number of camouflaged tile requests. By consuming more resources to ensure SDoP, the real FoVs can be hidden. Then, we proceed to analyze the impacts of SDoP on the QoE by jointly optimizing the durations for prediction, computing, and transmission that maximizes the QoE given arbitrary predictor, configured resources, and SDoP. We find that a larger SDoP requires more resources but degrades the performance of tile prediction. Simulation with state-of-the-art predictors on a real dataset verifies the analysis and shows that a user requiring a larger SDoP can be served with better QoE.


翻译:具有前瞻性的瓷砖基虚拟现实( VR) 视频流可以使用 FoV 和眼睛运动的痕迹来预测未来要求的瓷砖, 然后在播放前制作和提供预测的瓷砖。 经验的质量( QoE) 取决于瓷砖预测和消耗的资源的综合效应。 最近, 人们发现, 通过为用户收集的 FoV 和眼睛运动数据, 人们可以推断用户的身份和喜好。 现有的工作可以调查眼睛运动的隐私保护, 但从不研究如何保护Fov 的隐私, 以及隐私保护如何影响QE。 在此文件中, 我们努力描述和满足FoV 隐私要求。 我们考虑“ 为隐私而交易资源 ” 。 我们首先在真实的 FoV 和消耗资源周围添加伪装的瓷砖要求, 确定隐私的空间度, 是一个正常的加密请求。 通过消耗更多的资源来确保SDoP, 真正的FoVs可以隐藏。 然后, 我们继续分析SDoP 对给Q 带来的影响, 通过共同优化 E 的预测, 更精确的预测, 并且 显示S- DoP 配置一个更精确的S- drealalalalal 的S- prealal laveal 的预测, laveal 和S- s- s laveal lave lave lave laveal lad lad a lax a s a lad a lad a lad a lad lad lad lades a lades a laut a lad lades a lades a lad s lad lad lad lad lad lauts a lauts a lauts a lads a lauts a lauts a lauts- s laut- s lauts- s lauts- sal- s lauts- sal laut- sal- sal- sal- lauts- lauts- laut- sal- s- s laut- s- s- s- s- s- s- s- s- s- s- s- sal- laut- s- s- s

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年3月26日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
12+阅读 · 2019年12月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
已删除
将门创投
7+阅读 · 2018年4月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
0+阅读 · 2021年12月17日
Arxiv
7+阅读 · 2019年4月8日
Two Stream 3D Semantic Scene Completion
Arxiv
4+阅读 · 2018年7月16日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
已删除
将门创投
7+阅读 · 2018年4月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员