We present 2-dimensional turbulent electric field calculations via physics-informed deep learning consistent with (i) drift-reduced Braginskii theory under the framework of an axisymmetric fusion plasma with purely toroidal field and (ii) experimental estimates of the fluctuating electron density and temperature on open field lines obtained from analysis of gas puff imaging of a discharge on the Alcator C-Mod tokamak. The inclusion of effects from the locally puffed atomic helium on particle and energy sources within the reduced plasma turbulence model are found to strengthen correlations between the electric field and electron pressure. The neutrals are also directly associated with broadening the distribution of turbulent field amplitudes and increasing ${\bf E \times B}$ shearing rates. This demonstrates a novel approach in plasma experiments by solving for nonlinear dynamics consistent with partial differential equations and data without encoding explicit boundary nor initial conditions.
翻译:我们根据以下标准,通过物理知情深学,提出了二维动荡电场计算方法:(一) 在纯近地点的轴心聚变等离子体的框架内,减少漂移-Braginskii理论;(二) 从分析Actator C-Mod tokamak排放物的气体浮肿成像中得出的露天线电子密度和温度变化的实验性估计。将当地浮控原子对粒子和能源源的影响纳入减少的等离子气流模型中,可以加强电场与电子压力之间的相互关系。中中性器还直接与扩大战地振荡分布和增加美元=bf E\time B}剪裁速率直接相关。这显示了在等离子实验中采用的新做法,即根据部分差异方程式和数据解决非线性动态,而没有编码明确的边界和初始条件。