We explore algorithmic aspects of a simply transitive commutative group action coming from the class field theory of imaginary hyperelliptic function fields. Namely, the Jacobian of an imaginary hyperelliptic curve defined over $\mathbb{F}_q$ acts on a subset of isomorphism classes of Drinfeld modules. We describe an algorithm to compute the group action efficiently. This is a function field analog of the Couveignes-Rostovtsev-Stolbunov group action. We report on an explicit computation done with our proof-of-concept C++/NTL implementation; it took a fraction of a second on a standard computer. We prove that the problem of inverting the group action reduces to the problem of finding isogenies of fixed $\tau$-degree between Drinfeld $\mathbb{F}_q[X]$-modules, which is solvable in polynomial time thanks to an algorithm by Wesolowski.
翻译:我们探索了一个简单的中转交流组动作的算法方面, 它来自想象的超电子功能字段的类域理论。 即, 想象超电子曲线的 Jacobian, 定义在 drinfeld 模块的异形类子集上, 定义为$\ mathb{ F ⁇ qq$ 的想象超超电子曲线。 我们描述一种算法, 以高效地计算群集动作。 这是 Couveignes- Rostovtsev- Stolbunov 群集动作的函数领域类比 。 我们报告了一个明确的计算方法, 使用我们测试的 C++/ NTL 执行过程; 它在标准计算机上占用了一秒的分数 。 我们证明, 倒转该组动作的问题会减少在 Drinfeld $\ tathb{ F ⁇ [ X] $[ X] $modules之间的查找问题。 由于Wosolowski 的算法, 这在多式时间是可溶解的。