Creating autonomous robots that can actively explore the environment, acquire knowledge and learn skills continuously is the ultimate achievement envisioned in cognitive and developmental robotics. Their learning processes should be based on interactions with their physical and social world in the manner of human learning and cognitive development. Based on this context, in this paper, we focus on the two concepts of world models and predictive coding. Recently, world models have attracted renewed attention as a topic of considerable interest in artificial intelligence. Cognitive systems learn world models to better predict future sensory observations and optimize their policies, i.e., controllers. Alternatively, in neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment. Both ideas may be considered as underpinning the cognitive development of robots and humans capable of continual or lifelong learning. Although many studies have been conducted on predictive coding in cognitive robotics and neurorobotics, the relationship between world model-based approaches in AI and predictive coding in robotics has rarely been discussed. Therefore, in this paper, we clarify the definitions, relationships, and status of current research on these topics, as well as missing pieces of world models and predictive coding in conjunction with crucially related concepts such as the free-energy principle and active inference in the context of cognitive and developmental robotics. Furthermore, we outline the frontiers and challenges involved in world models and predictive coding toward the further integration of AI and robotics, as well as the creation of robots with real cognitive and developmental capabilities in the future.
翻译:能够积极探索环境、获取知识和不断学习技能的自主机器人的创建,是认知和发育机器人中设想的最终成就。他们的学习过程应当基于以人类学习和认知发展的方式与物理和社会世界的互动。基于这一背景,我们在本文件中侧重于世界模型和预测编码的两个概念。最近,世界模型作为一个对人工智能相当感兴趣的专题重新引起关注。认知系统学习世界模型,以更好地预测未来感知观测和优化其政策,即控制器。在神经科学中,预测编码建议大脑不断预测其投入,并适应其环境内的创造动态和控制行为模式。根据这一背景,我们可认为,世界模型和人类具有持续或终身学习能力的认知发展概念发展基础。虽然许多研究都是关于认知机器人和神经机器人的预测编码,但很少讨论基于世界模型的方法和机器人的预测能力之间的关系。因此,在本文件中,我们澄清了其投入的输入和适应模型的输入,以及当前机器人发展动态研究的模型和概念状况,作为这些主题的在线,我们作为未来发展模型和动态研究的模型和动态理论,作为当前发展模型的共生化的模型和动态,作为世界的预变的模型和动态的预变的理论,作为世界的预的模型,作为全球的预的模型和动态的模型的预的预的预的模型和动态的预的模型和动态的模型,我们的预的预的预的理论,作为世界的预的预的预的预的预的预的模型和预的预的模型和预的预的预的预的模型和预的预的预的预的预的预的预的预的预的预的周期化世界的模型和预的预的预的预的预的预的预的预的预的预的预的预的预的模型,在这些世界的预的模型和预的预的预的模型和预的预的预的预的预的模型和预的预的预的预的模型和预的预的预的预的预的预的预的预的预的预的预的理论,这些世界的预的预的模型和预的预的预的预的预的预的预的预的预的预的预的预的预的预的预的预的预的预的预的预的预的理论,这些世界的理论,这些世界的理论