It is common for researchers to holdout data from a study pool to be used for external validation as well as for future research, and the same desire is true to those using machine learning modeling research. For this discussion, the purpose of the holdout sample it is preserve data for research studies that will be analysis-naive and randomly selected from the full dataset. Analysis-naive are records that are not used for testing or training machine learning (ML) models and records that do not participate in any aspect of the current machine learning study. The methodology suggested for creating holdouts is a modification of k-fold cross validation, which takes into account randomization and efficiently allows a three-way split (holdout, test and training) as part of the method without forcing. The paper also provides a working example using set of automated functions in Python and some scenarios for applicability in healthcare.
翻译:研究人员通常不从供外部验证和今后研究使用的研究池中获取数据,使用机器学习模型研究的人也有同样的希望。在这次讨论中, " 暂停 " 样本的目的是保留从完整的数据集中随机选取的分析性研究数据。 " 分析 -- -- naive " 是不用于测试或培训机器学习模型和记录,不参与当前机器学习研究的任何方面的记录。 " 暂停 " 的方法是修改 k-倍交叉验证,考虑到随机化,并有效地允许三道分解(停用、测试和培训),作为方法的一部分,不强迫。 " 分析 -- -- naine " 是使用Python的一套自动功能和一些适用于医疗保健的假想实例。