Efficient estimation of line spectral from quantized samples is of significant importance in information theory and signal processing, e.g., channel estimation in energy efficient massive MIMO systems and direction of arrival estimation. The goal of this paper is to recover the line spectral as well as its corresponding parameters including the model order, frequencies and amplitudes from heavily quantized samples. To this end, we propose an efficient grid-less Bayesian algorithm named VALSE-EP, which is a combination of the variational line spectral estimation (VALSE) and expectation propagation (EP). The basic idea of VALSE-EP is to iteratively approximate the challenging quantized model of line spectral estimation as a sequence of simple pseudo unquantized models so that the VALSE can be applied. Note that the noise in the pseudo linear model is heteroscedastic, i.e., different components having different variances, and a variant of the VALSE is re-derived to obtain the final VALSE-EP. Moreover, to obtain a benchmark performance of the proposed algorithm, the Cram\'{e}r Rao bound (CRB) is derived. Finally, numerical experiments on both synthetic and real data are performed, demonstrating the near CRB performance of the proposed VALSE-EP for line spectral estimation from quantized samples.


翻译:通过量化样本对线光谱进行高效估计,在信息理论和信号处理方面非常重要,例如,对大型大型高能效MIMO系统和到货估计方向的频道估计,本文件的目标是从大量量化样本中恢复线光谱及其相应参数,包括模型顺序、频率和振幅,为此,我们建议采用名为VALSE-EP的没有电网的高效巴伊西亚算法,这是变异线光谱估计(VALSE-EP)和预期传播(EP)的组合。VALSE-EP的基本想法是迭接地接近具有挑战性的线光谱估计模型,作为简单的假冒非量化模型的序列,以便应用VALSESE。注意假线性模型中的噪音具有高度分解性,即不同差异的不同组成部分,VALSE的变异性是重新获得最后VALSE-EP的组合。此外,为了获得拟议的算法基准性、Cram'r 光谱估计模型的C-SEVER 和SEVAL-S-SE-S-Sional-Servial supal suimal subal suest supersuest 的模拟,最后显示的模拟。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年10月11日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
6+阅读 · 2018年3月12日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员