We introduce a sample-efficient method for learning state-dependent stiffness control policies for dexterous manipulation. The ability to control stiffness facilitates safe and reliable manipulation by providing compliance and robustness to uncertainties. Most current reinforcement learning approaches to achieve robotic manipulation have exclusively focused on position control, often due to the difficulty of learning high-dimensional stiffness control policies. This difficulty can be partially mitigated via policy guidance such as imitation learning. However, expert stiffness control demonstrations are often expensive or infeasible to record. Therefore, we present an approach to learn Stiffness Control from Augmented Position control Experiences (SCAPE) that bypasses this difficulty by transforming position control demonstrations into approximate, suboptimal stiffness control demonstrations. Then, the suboptimality of the augmented demonstrations is addressed by using complementary techniques that help the agent safely learn from both the demonstrations and reinforcement learning. By using simulation tools and experiments on a robotic testbed, we show that the proposed approach efficiently learns safe manipulation policies and outperforms learned position control policies and several other baseline learning algorithms.


翻译:我们引入了一种样本高效的方法,用于学习以国家为依存的严格控制政策,以便巧妙地操纵; 控制僵硬的能力通过提供合规和稳健的不确定性,促进安全可靠的操纵; 目前多数用于实现机器人操纵的强化学习方法完全侧重于定位控制,这往往是由于难以学习高维的僵硬控制政策。 这种困难可以通过模拟学习等政策指导来部分缓解; 然而, 专家僵硬控制示范往往费用昂贵或难以记录。 因此, 我们提出了一个方法,从强化位置控制经验(SCAPE)中学习僵硬控制,通过将定位控制演示转化为近似、次于最佳的僵硬控制演示,绕过这一困难。 然后, 扩大演示的不优化性通过辅助技术来解决, 帮助代理从演示和强化学习中安全地学习。 我们通过在机器人测试台上使用模拟工具和实验, 表明拟议方法有效地学习安全操纵政策,并符合超常学习的定位控制政策和其他一些基线学习算法。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
60+阅读 · 2019年8月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月4日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
60+阅读 · 2019年8月26日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员