In the area of natural language processing, deep learning models are recently known to be vulnerable to various types of adversarial perturbations, but relatively few works are done on the defense side. Especially, there exists few effective defense method against the successful synonym substitution based attacks that preserve the syntactic structure and semantic information of the original text while fooling the deep learning models. We contribute in this direction and propose a novel adversarial defense method called Synonym Encoding Method (SEM). Specifically, SEM inserts an encoder before the input layer of the target model to map each cluster of synonyms to a unique encoding and trains the model to eliminate possible adversarial perturbations without modifying the network architecture or adding extra data. Extensive experiments demonstrate that SEM can effectively defend the current synonym substitution based attacks and block the transferability of adversarial examples. SEM is also easy and efficient to scale to large models and big datasets.


翻译:在自然语言处理领域,人们最近知道深层次的学习模式容易受到各种对抗性扰动的影响,但在国防方面却做的工作相对较少。特别是,对于成功的同义词替代攻击,几乎没有有效的防御方法来保护原始文本的同义体结构和语义信息,同时愚弄深层次的学习模式。我们在这方面作出贡献,并提议一种新型的对抗性防御方法,称为同义词编码方法(SEM)。具体地说,SEM在目标模型输入层之前插入一个编码器,以绘制每一组同义词的图解到一个独特的编码中,并训练该模型在不改变网络结构或增加额外数据的情况下消除可能发生的对立词扰动。广泛的实验表明,SEM能够有效地捍卫目前的同义词替代攻击,并阻止对抗性例子的转移。SEM也容易和高效地向大型模型和大数据集扩展。

1
下载
关闭预览

相关内容

SEM 是 Search Engine Marketing 的缩写,中文意思是搜索引擎营销。SEM 是一种新的网络营销形式。SEM 所做的就是全面而有效的利用搜索引擎来进行网络营销和推广。SEM 追求最高的性价比,以最小的投入,获最大的来自搜索引擎的访问量,并产生商业价值。
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Adversarially Robust Low Dimensional Representations
Arxiv
0+阅读 · 2021年8月13日
Arxiv
5+阅读 · 2020年10月22日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Top
微信扫码咨询专知VIP会员